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APPLICATION OF THE PERTURBATION METHOD TO THE THEORY 
OF TORSION OF ELASTO-PLASTIC BARS* 

G.I. BYKOVTSEV and 1u.D. TSVBTKOV 

A general approach to solving the problem of finding an elasto-plastic boundary dur- 
ing twisting the elasto-plastic bars is considered. It is assumed that the bound- 
ary of transverse cross section of the bar is a smooth curve. The defining 
relations are derived using the assumption that the angle is small and that the 
conditions of coupling at the elasto-plastic boundary hold. A method of small para- 
meter is used. The perturbation method has been used before to solve a number of 
elasto-plastic problems in which the whole contour of the body was surrounded by a 
plastic zone; they can be found in the monograph /l/. If the plastic flow beginsat 
some point of the contour, then the method requires a certain specifiedmodification, 
which is given below for the case of torsion of elasto-plastic bars. Approximate 
solutions were constructed in /2,3/ for elasto-plastic bars of polygonal cross sec- 
tion, using the function of complex variable methods. 

1. Consider the torsion of a rectilinear cylindrical bar made of perfect elasto-plastic 
material, with transverse cross section D and boundary L. We assume that an elasticsolution 
for the bar in question is known. Let 'c = {%z) (a = I, 2) denote the tangential stress appear- 
ing in the cylinder during torsion and y = {ya} be the total deformation composed of the 
elastic ye and plastic yp component 

ya = ya" + yccp (1.1) 

In the case of elastic torsion of a bar the deformation tensor components are connected with 
the displacement by the relation 

ya = 'i.20 (%a + s&+3) (1.2) 

Here o denotes the twist, (~(51, $2) is the St. Venant stress function, %a is the antisym- 
metric unit tensor and zp is the coordinate of the point at which the deformation is deter- 
mined. When plastic regions appear in the bar, the total deformation components in these re- 
lations will have the form 

ya = /,a + OQ%zJ+ (1.3) 

where f (21, mm 0) is the function characterizing the deplanation of the transverse cross sec- 
tion of the bar. The following equation of equilibrium will hold in the elastic and plastic 
zone of the bar: 

%.a = 0 (1.4) 

The stresses and elastic deformations are connected by the Hooke's Law 

ta = 2pJ%ze (1.5) 

At the bar boundary L the following boundary condition must hold: 

r,n, = 0 (1.6) 

where na are components of.the unit vector normal to the contour L of the transverse cross 

section. The stresses appearing in the plastic region of the bar satisfy the condition of 
plasticity 

za'c, = k= (1.7) 

and we have the associated flow rule 

ya' = ?Ja (1.8) 
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where a dot denotes the derivative of the total deformation components with respect to 0. 
The condition of conjugation of solutions must hold at the boundary _P separatingthe elastic 
and plastic region 

[t,l = Iyal = 0 (1.9) 

2. Conditions (1.4) and (1.7) must hold in the plastic zone, i.e. the problem is stat- 
ically determinable and its solution has the form /4/ 

ra = ks,, sa = {-sin 6, cos 8) (2.1) 

where sa are the compoents of the unit vector tangent to the contour L, and 8 is the angle 
of inclination of rectilinear stress field characteristics to the Xl-axis. In the present 
case it coincides with the angle of inclination of the unit normal "p = E@&X of the contour L 
to the x,-axis. 

Using the relation of the associated law of flow (1.8) and the expression (2.1), we can 
write the following expression for the warping function of the transverse cross section of the 
bar in the plastic region: 

f' = xc&r + c (2.2) 

where z, is the coordinate of the point at which ~'(o,x~,x~) is determined, r is the distance 
along the normal to L, from the point on the boundary Ls to the point in question, and C is 
a constant with the value specific along each characteristic for a given o. 

Integrating (2.2) we can obtain the warping of the transverse cross section of the bar 
under torsion f(~,x~, x2) in the plastic region, p rovided that the boundary LS of the elastic 
region is known. The solution obtained must satisfy the following inequality in the plastic 
region: 

Let the bar under torsion be in the elastic state at 61 (00, and let there exist at 
0 = 00 at least one point of the bar boundary L at which the plastic state will be realized, 

i.e. no elastic solution not exceeding the yield point will exist for @>00- We shall assume 
that when 0 = 00, a stress will appear at the point 4 (Fig-l) of the contour, the components 
of which will satisfy the relation (1.7). Let us choose the Cartesian s,Oxt coordinate system 
in such a manner, that the XZ-axis passes through this point in the direction perpendicular 
to the tangent to L atA. We denote by xa")(8*) the coordinates of the point of intersection of 
the elasto-plastic boundary LS at w> wO with the bar contour. Taking into account the rela- 
tions (1.2), (1.51, (1.9) and conditions (2.1), we can write the following relation at the 
boundary Ls : 

~0 (cpm + we.) = kz (2.4) 

The equation of the elasto-plastic boundary Ls can be written in the form 

2, (e) = 2,(o) (e) - T (eh (2.5) 

where &$)(t3) denote the coordinates of the points on the boundary L of the bar transversecross 
section and r(e) is the magnitude of the segmentalongthenormal 
to L originating at L. Substituting into (2.4) relation (2.5) 
and the expansion of p into a Taylor series along the normal to 

L, we obtain 

Fig.1 

(2.6) 

where (p!'$t).n denotes the m-th derivative along the normal to 
L, of the first derivative of cp with respect to G. 

Multiplying the left- and right-hand side of (2.6) by n, 
and summing the result over the repeated index a, we obtain 
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(2.7) 

Multiplying the equation (2.6) by s, and repeating the above procedure, we arrive at the fol- 
lowing expression: 

I-&q nI (m+l) 
f ~,.m...n f ss&&'--r 

>I 
=cz k 

L (2.8) 
m=D 

Thus we have obtained two conditions, (2.7) and (2.81, at the boundary, forsolving theLaplace 
equation 

hq = 0 (2.9) 

and determiningtheunknown function r(8) defining the boundary Ls is the problem of torsion 
of an elasto-plastic bar. 

Let the solution sought be dependent on some parameter 6. We shall seek the solutionin 
the form of a power series in terms of this parameter 

(P&8) = &is'='po + 619 (2.10) 

where 'pO is the St. Venant stress function corresponding to the twist WQ. We write the equa- 
tions of the elasto-plastic boundary Ls in the form 

Let further 

a= 2 O.@=Oo+sO 
i=* 

(2.11) 

Substituting the expansions (2.10)--(2.12) into (2.7)‘ (2.8) and (2.9) we obtain, respectively, 

(2.13) 

Let us now assume that the quantity 5, = X12 - 0+ (Fig-l) is small and of order ij. This im- 
plies that sz and n, are also of order 6. C onsider the following expression: 

F(e) t (~%((Po.B + d”)nD) -k} IL, (2.16) 

Expanding the functionF(8)into a Taylor series along the arc of the contour L in the neigh- 
borhood of A, we have 

(2.17) 
m=cl 

'4'(e) I&SA = {~oo?('p0.s + ZcP)%) - k)ls=s, = 0 

The tangential stress at the contour L assumes its maximum value at the point A, i.e. 

F, s (e) ha = PO,, ho, s + ~8l~ah 8 ls.+ = 0 (2.18) 

and we can therefore write (2.17) in the form 

(2.19) 

Let R be a finite parameter such that 
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S-SA= Rf= R(n/Z-0) 

Then we can write (2.19) in the form 

But E = n/2 - 0 when 8fZ [f&, n/21 is a quantity of order 6, therefore the function F(O) is of 
order 6%. Equating in (2.13) the terms accompanying the first power of 6, we obtain 

{cpl,tl - T'p o,nnI IL = 0 (2.20) 

Using (1.3)- (1.5) which hold for the elastic and plastic regions, we can write %.aa - -0 and 
the condition (2.18) should hold at the point A: 

pod%. s + d%J, sls=s, = ‘PO, ssls=sA = 0 

Repeating the arguments used above we conclude, that T,,~,, on the arc S,S a quantity is of 
order 6, and hence ql_,, = 0. Since rl is a function of the angle 8, we obtain r, = o, = 'pl = 0, 
i.e. the expansion (2.10), (2.11) into series in small parameter of the solutions sought be- 
gin with the second power of 6, namely 

(2.21) 

2, (6, e) = 25)) (e) - 5 ri (6, e) n,& = zb”’ - Pin, 
i=2 

We can assume without loss of generality that 

0 = o,(l + 6") (2.22) 

and thus define the small parameter 6 which remain undefined up to now. With (2.21) and 
(2.22) taken into account, the relations (2.13)- (2.15) become, respectively, 

(2.23) 

(2.24) 

A'pI = 0 i = 0, 1, 2, . . . (2.25) 

3. We consider, as an example, the'problem of determining the boundary Ls for the case 
when a rectilinear bar of elliptical cross section is subjected to elasto-plastic torsion. 
The equation of the contour L in the 310~ plane will be 

x& + zl~/a8~ = 1 (3.1) 

When o= oO, a stress appears at two points of the contour L the components of which satisfy 
the equation (1.7). The coordinates of these points are (O,a,) and (0,--a,). The St. Venant 
function q0 (I,, la) and the greatest tangential stress on L are given, respectively, by 

a,~ - a,2 
WI @I, 21) = - - zpz* 

.I2 + 4 
(3.2) 

(3.3) 

Equating in (2.23) the terms accompanyingthe second power of 6, we obtain 

'Pa,n (6, @IL = 0 (3.4) 

The solution of the Laplace equation (2.25) with the boundary condition (3.4) will be 

'PO (6, fl) = coast (3.5) 

Equating in (2.24) the terms accompanying the second power of 6 and taking into account (3.3) 
and (3.51, we obtain 
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Here or and zz Co)(O) are the contourcoordinatesofthe crosssectionofbar L. Substituting (3.7) 
into (3.6) and taking into account the assumptions made before about the components oftheunit 
vectors $2 and n,, we obtain 

and this yields 

IQ - co9 0 
Tl (a, 8) = Ll* - -g-- - 6” 

(3.8) 
-' 

The elasto-plastic boundary in the present problem is symmetrical about the coordinate 
axes, therefore we shall study its behavior, in what follows, only in the first quadrant of 
Z.10Z2. It is clear that at some value of the angle e=B,W the boundaries L and La will have 
a common point, i.e. 

5a (8, e*(*l) - z;o) (e,q = 0 

and this yields 

Equating in (2.23) the terms accompanying the third power of 8, we obtain 

or, taking into account the assumptions made before, 

(3.9) 

We know /5/ 
singly connected 
onto the circle 

that the problem of torsion can be assumed solved if a function mapping a 
region D onto a circle is found. In the present case the relation mapping D 

itI< 1 is 

i=2,+-iz*=O(g)=Ef ;+$), 5 = pe’” 

The boundary condition (3.10) can now be written as 

~p,,~ IL = (3B/8 -D/2)(0 + 5) + B (a3 f P)/8, cx E [cc*, x - a.1 

'P~,~ IL= (D/2 - 3B/8)(o f 8) -B (8 f 3)/S, a E In + at, 2% -or*] 

and from /5/ we know that if 
F, = 'pa + % 

where 9% is a harmonic conjugate of c&, then 

Substituting into (3.13) the boundary condition (3.11), we obtain 

(3.11) 

(3.12) 

(3.13) 

(3.14) 
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From (3.12) we see that the following relations must hold at the boundary ofthecircle I81=* 

f {@s’ (h 0) -i- @S’ Cd. 011 = tpg,p k=l (3.15) 

+ {@,'(% a) - GF,'f% OH = 'ps,crjp=* 

Using (3.14) we can write the second condition of (3.15) as 

OrC using the Cartesian coordinate system, as 

@I* -r@)S 
%,s IL = - IL@* (IQ + a& i 

eosae~~e~) 3 cos~8'~' 

65 -T---i-r_ 8, 

Equating now in (2.24) the terms accompanying 68, we obtain 

@%,a - ?a 0 + 91a&))fL = 0 

or, taking account of the assumptions made above, 

Substituting (3.17) into (3.16) we find %(6,3) 

When O== I&(@, the boundaries L and Ls will have a common point, i.e. 

8~~~ (8, ep) -t- 6*rro (6, e,y = 0 
and this yields 

(3.16) 

(3.17) 

0.4 5.8 1.2 qrz 

Fig.2 

Fig.2 depicts the distribution of the 
boundary L, for the following values of the 
critical angle of inclusion 3,'s) of the contour 
by the plastic region aa the parameter 6: 

1) 3,") = 1.032 and 6 == 0.35; 

2) e,@) = 0.875 and 6 = 0.5; 
3) Q*(S) = 0.74 and 6=0.6. 

Fig.3 shows the dependence of hlln and 
k&k on e for the following values of e*(a) 

ma 6: 

1) e!s) = 0.74 ana 6 = 0.6; 
2) e,") = 0.373 end 6 = 0.5. 

are the components 
aa tangent to the 
7a were obtained 

and (3.14). 

of the unit vectors normal 
contour L. The values of 
using the relations (1.5) 

Fig.3 
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